DOE Wire Workshop St. Petersburg, FL January 21-22, 2003

Scale-up of YBCO Coated Conductor by MOCVD

Hee-Gyoun Lee, Gene Carota, Jodi Reeves, Mike Funk, Yijie Li, Yunfei Qiao, Yi-Yuan Xie, Xuming Xiong and Venkat Selvamanickam

SuperPower, Inc. Schenectady, NY

Acknowledgements

This work was supported in part by AFOSR and Argonne National Laboratory

Only MOCVD offers advantage of <u>BOTH</u> high deposition rate & large deposition area

Process	Deposition Rate for Jc > 1 MA/cm ² (Angstroms/second)	
PLD	650	
MOCVD	150	
E-beam BaF ₂	1	
MOD	1	

<u>Throughput</u> = Deposition Rate × Deposition Area

Unlimited Deposition Area with MOCVD:

As long & as wide as showerhead

- Precursors are separated from Deposition Chamber
 - refill is simple (critical for longlength manufacturing)
 - no regeneration limits (probably, only MOCVD offers this!)
- Precursors are individually controlled
 - can tailor composition (offstoichiometric for high Jc)
 - can modify composition during deposition
- Coating is not limited by line-of sight
 - large area, double-sided coatings possible

CVD is used as a commercial thin film tape manufacturing process

...each of the <u>nine</u> thin-film semiconductor layers is sequentially deposited in separate, dynamically-isolated, <u>plasma enhanced</u> <u>chemical vapor deposition</u> (PECVD) chambers in a continuous roll-to-roll deposition process.

Scale-up of MOCVD for HTS deposition

MOCVD process scaled up to meterlong tapes with high currents

IBAD in- plane texture	End-to- end Ic <u>10 cm</u> (A)	Best Ic section (A)
19 °	60	85
16°	85	105
11°	135 (6 cm)	150

Reported at the DOE Peer Review in July 2002

Progress in high-amperage, meter-long conductor by MOCVD

In Oct.'02, 147 A over 1.06 m

l_c distribution of 1.23 m, 147 A MOCVD tape at 0.6 T in 0.5 cm intervals

Measurement was done by Y. Coulter, L. Civale and J. Willis of LANL

Tape Position (cm)

Minimum: 28 A at 0.6 T Limits the end-to-end current over 1.23 m to

147 A at self-field

Maximum: 50 A at 0.6 T Maximum current is 80% higher;

potential for higher Ic at self-field

Higher currents achieved by MOCVD beyond routine 100 A

173 A over 1 m

Samples measured from longer piece lengths

100 A Performance achieved in 2.8 m long tapes produced by MOCVD

One section < 100 A (97 A)

Issues

- Hardware failure during long runs
- Process stability over long runs
- High critical currents in thick films

Simulation of hardware failure

Run start

Shutdown the system during run

Restart the run

High Jc even when run is drastically interrupted!

Process stability: Multi-pass run

Deposit first half thickness of film

Deposit second half thickness of film

120A over 1-meter

No Jc degradation even when process cycle time is reduced to 1/2 With reduced process cycle time, process stability can be increased

Thick Films for high currents

- Porosity
- surface roughness
- texture degradation
- second phase particles

Details will be discussed by J. Reeves at AFOSR annual review